Dye-sensitized photocatalytic systems (DSPs) have been extensively investigated for solar-driven hydrogen (H2) evolution. However, their application in carbon dioxide (CO2) reduction remains limited. Furthermore, current solar-driven CO2-to-CO DSPs typically employ rhenium complexes as catalysts. In this study, we have developed DSPs that incorporate noble metal-free components, specifically a zinc-porphyrin as photosensitizer (PS) and a cobalt-quaterpyridine as catalyst (CAT). Taking a significant stride forward, we have achieved an antenna effect for the first time in CO2-to-CO DSPs by introducing a Bodipy as an additional chromophore to enhance light harvesting efficiency. The energy transfer from Bodipy to zinc porphyrin resulted in remarkable stability (turn over number (TON)=759 vs. CAT), and high CO evolution activity (42?mmol?g?1?h?1 vs. CAT).
  
So far, symmetry-breaking charge separation (SB-CS) has been observed with a limited number of chromophores and is usually inhibited by the formation of an excimer. We show here that thanks to fine-tuning of the interchromophore coupling via structural control, SB-CS can be operative with pyrene, despite its high propensity to form an excimer. This is realized with a bichromophoric system consisting of two pyrenes attached to a crown ether macrocycle, which can bind cations of different sizes. By combining stationary and time-resolved spectroscopy together with molecular dynamics simulations, we demonstrate that the excited-state dynamics can be totally changed depending on the binding cation. Whereas strong coupling leads to rapid excimer formation, too weak coupling results in noninteracting chromophores. However, intermediate coupling, achieved upon binding of Mg2+, allows for SB-CS to be operative.
 
There is a growing interest in developing dye-sensitized photocatalytic systems (DSPs) to produce molecular hydrogen (H2) as alternative energy source. To improve the sustainability of this technology, we replaced the sacrificial electron donor (SED), typically an expensive and polluting chemical, with an alcohol oxidation catalyst. This study demonstrates the first dye-sensitized system using a diketopyrrolopyrrole dye covalently linked to 2,2,6,6-tetramethyl-1-piperidine-N-oxyl (TEMPO) based catalyst for simultaneous H2 evolution and alcohol-to-aldehyde transformation operating in water with visible irradiation.
  
A large number of multipolar dyes undergo excited-state symmetry breaking (ESSB) in polar media. During this process, electronic excitation, initially distributed evenly over the molecule, localizes, at least partially, on one donor–acceptor branch. To resolve its initial stage, ESSB is investigated with a donor–acceptor–donor dye in binary mixtures of nonpolar and polar solvents using time-resolved infrared absorption spectroscopy. The presence of a few polar molecules around the dye is sufficient to initiate ESSB. Although the extent of asymmetry in a mixture is close to that in a pure solvent of similar polarity, the dynamics are slower and involve translational diffusion. However, preferential solvation in the mixtures leads to a larger local polarity. Furthermore, inhomogeneous broadening of the S1 <- S0 absorption band of the dye is observed in the mixtures, allowing for a photoselection of solutes with different local environments and ESSB dynamics.
 
Electron transfer (ET) quenching in nonpolar media is not as well understood as in polar environments. Here, we investigate the effect of dipole–dipole interactions between the reactants using ultrafast broadband electronic spectroscopy combined with molecular dynamics simulations. We find that the quenching of the S1 state of two polar dyes, coumarin 152a and Nile red, by the polar N,N-dimethylaniline (DMA) in cyclohexane is faster by a factor up to 3 when exciting on the red edge rather than at the maximum of their S1 ↠S0 absorption band. This originates from the inhomogeneous broadening of the band due to a distribution of the number of quencher molecules around the dyes. As a consequence, red-edge excitation photoselects dyes in a DMA-rich environment. Such broadening is not present in acetonitrile, and no excitation wavelength dependence of the ET dynamics is observed. The quenching of both dyes is markedly faster in nonpolar than polar solvents, independently of the excitation wavelength. According to molecular dynamics simulations, this is due to the preferential solvation of the dyes by DMA in cyclohexane. The opposite preferential solvation is predicted in acetonitrile. Consequently, close contact between the reactants in acetonitrile requires partial desolvation. By contrast, the recombination of the quenching product is slower in nonpolar than in polar solvents and exhibits much smaller dependence, if any, on the excitation wavelength.
  
Photoinduced symmetry-breaking charge separation (SB-CS) results in the generation of charge carriers through electron transfer between two identical molecules, after photoexcitation of one of them. It is usually studied in systems where the two reacting moieties are covalently linked. Examples of photoinduced bimolecular SB-CS with organic molecules yielding free ions remain scarce due to solubility or aggregation issues at the high concentrations needed to study this diffusion-assisted process. Here we investigate the excited-state dynamics of perylene (Pe) at high concentrations in solvents of varying polarity. Transient absorption spectroscopy on the subnanosecond to microsecond timescales reveal that self-quenching of Pe in the lowest singlet excited state leads to excimer formation in all solvents used. Additionally, bimolecular SB-CS, resulting in the generation of free ions, occurs concurrently to excimer formation in polar media, with a relative efficiency that increases with the polarity of the solvent. Moreover, we show that SB-CS is most efficient in room-temperature ionic liquids due to a charge-shielding effect leading to a larger escape of ions and due to the high viscosity that disfavours excimer formation.
  • Coupling to octahedral tilts in halide perovskite nanocrystals induces phonon-mediated attractive interactions between excitons
    N. Yazdani, M.I. Bodnarchuk, F. Bertolotti, N. Masciocchi, I. Fureraj, B. Guzelturk, B. Cotts, M. Zajac, G. Raino, M. Jansen, S.C. Boehme, M. Yarema, M.F. Lin, M. Kozina, A. Reid, X. Shen, S. Weathersby, X. Wang, E. Vauthey, A. Guagliardi, M.V. Kovalenko, V. Wood and A.M. Lindenberg
    Nature Physics, 20 (2024), p47-53
    DOI:10.1038/s41567-023-02253-7 | unige:174617 | Abstract | Article HTML | Article PDF
Understanding the origin of electron-phonon coupling in lead halide perovskites is key to interpreting and leveraging their optical and electronic properties. Here we show that photoexcitation drives a reduction of the lead-halide-lead bond angles, a result of deformation potential coupling to low-energy optical phonons. We accomplish this by performing femtosecond-resolved, optical-pump-electron-diffraction-probe measurements to quantify the lattice reorganization occurring as a result of photoexcitation in nanocrystals of FAPbBr(3). Our results indicate a stronger coupling in FAPbBr(3) than CsPbBr(3). We attribute the enhanced coupling in FAPbBr(3) to its disordered crystal structure, which persists down to cryogenic temperatures. We find the reorganizations induced by each exciton in a multi-excitonic state constructively interfere, giving rise to a coupling strength that scales quadratically with the exciton number. This superlinear scaling induces phonon-mediated attractive interactions between excitations in lead halide perovskites.
 
A significant number of quadrupolar dyes behave as their dipolar analogues when photoexcited in polar environments. This is due to the occurrence of excited-state symmetry breaking (ES-SB), upon which the electronic excitation, initially distributed over the whole molecule, localises preferentially on one side. Here, we investigate the ES-SB properties of two A–D–A dyes, consisting of a pyrrolo-pyrrole donor (D) and either cyanophenyl or dicyanovinyl acceptors (A). For this, we use time-resolved vibrational spectroscopy, comparing IR absorption and femtosecond stimulated Raman spectroscopies. Although dicyanovinyl is a stronger electron-withdrawing group, ES-SB is not observed with the dicyanovinyl-based dye even in highly polar media, whereas it already takes place in weakly polar solvents with dyes containing cyanophenyl accepting groups. This difference is attributed to the large electronic coupling between the D–A branches in the former dye, whose loss upon symmetry breaking cannot be counterbalanced by a gain in solvation energy. Comparison with analogues of the cyanophenyl-based dye containing different spacers reveals that interbranch coupling does not so much depend on the distance between the D–A subunits than on the nature of the spacer. We show that transient Raman spectra probe different modes of these centrosymmetric molecules but are consistent with the transient IR data. However, lifetime broadening of the Raman bands, probably due to the resonance enhancement, may limit the application of this technique for monitoring ES-SB.
  
The nature of the lowest-energy electronic absorption band of crystal violet (CV) and particularly the origin of its high-energy shoulder have been debated since the middle of the past century. The most recent studies invoke a splitting of the S1 state upon symmetry breaking induced by interactions with the solvent and/or the counterion. Using a combination of stationary and time-resolved polarized spectroscopy together with quantum-chemical calculations, we show that torsional disorder in the ground-state results in an inhomogeneous broadening of the absorption band of CV. The center of the band is mostly due to symmetric molecules with a degenerate S1 state, whereas the edges originate from transitions to the S1 and S2 states of distorted symmetry-broken molecules. Transient-absorption measurements with different excitation wavelengths reveal that these two groups of molecules interconvert rapidly in liquid but not in a rigid environment.
 
Occurrence of chiral recognition in bimolecular photoinduced electron transfer (ET) is difficult to identify because of the predominant role of diffusion. To circumvent this problem, we apply a combination of ultrafast time-resolved fluorescence and transient electronic absorption to look for stereoselectivity in the initial, static stage of ET quenching, where diffusion is not relevant. The fluorophore and electron acceptor is a cationic hexahelicene, whereas the quencher has either stereocentered (tryptophan) or axial (binaphthol) chirality. We found that, in all cases, the quenching dynamics are the same, within the limit of error, for different diastereomeric pairs in polar and medium-polar solvents. The same absence of chiral effect is observed for the recombination of the radical pair, which results from the quenching. Molecular dynamics simulations suggest that the distribution of inter-reactant distance is independent of the chirality of the acceptor and the donor. Close contact resulting in large electronic coupling is predicted to be possible with all diastereomeric pairs. In this case, ET is an adiabatic process, whose dynamics do no longer depend on the coupling, but are rather controlled by high-frequency intramolecular modes.
  • Experiment and theory reveal similarities and differences between porphycenes substituted at the meso position with amino and nitro groups
    I. Mbakara, A. Gajewska, A. Listkowski, M. Kijak, K. Nawara, T. Kumpulainen, E. Vauthey and J. Waluk
    Physical Chemistry Chemical Physics, 24 (2022), p29655-29666
    DOI:10.1039/D2CP04555A | unige:165882 | Abstract | Article HTML | Article PDF
Parent, unsubstituted porphycene and its two derivatives: 2,7,12,17-tetra-n-propylporphycene and 2,7,12,17-tetra-t-butylporphycene were substituted at the meso position with amino and nitro groups. These two families of porphycenes were characterized in detail with respect to their spectral, photophysical, and tautomeric properties. Two trans tautomers of similar energies coexist in the ground electronic state, but only one form dominates in the lowest excited singlet state. Absorption, magnetic circular dichroism (MCD), and emission anisotropy combined with quantum-chemical calculations led to the assignment of S1 and S2 transitions in both tautomers. Compared with the parent porphycene, the S1–S2 energy gap significantly increases; for one tautomeric form, the effect is twice as large as for the other. Both amino- and nitroporphycenes emit single fluorescence; previously reported dual emission of aminoporphycenes is attributed to a degradation product. Introduction of bulky t-butyl groups leads to a huge decrease in fluorescence intensity; this effect, arising from the interaction of the meso substituent with the adjacent t-butyl moiety, is particularly strong in the nitro derivative.
  
Conjugated molecules with phenylethynyl building blocks are usually characterised by torsional disorder at room temperature. They are much more rigid in the electronic excited state due to conjugation. As a consequence, the electronic absorption and emission spectra do not present a mirror-image relationship. Here, we investigate how torsional disorder affects the excited state dynamics of 9,10-bis(phenylethynyl)anthracene in solvents of different viscosities and in polymers, using both stationary and ultrafast electronic spectroscopies. Temperature-dependent measurements reveal inhomogeneous broadening of the absorption spectrum at room temperature. This is confirmed by ultrafast spectroscopic measurements at different excitation wavelengths. Red-edge irradiation excites planar molecules that return to the ground state without significant structural dynamics. In this case, however, re-equilibration of the torsional disorder in the ground state can be observed. Higher-energy irradiation excites torsionally disordered molecules, which then planarise, leading to important spectral dynamics. The latter is found to occur partially via viscosity-independent inertial motion, whereas it is purely diffusive in the ground state. This dissimilarity is explained in terms of the steepness of the potential along the torsional coordinate.
 
The excited-state properties of an amphiphilic porphyrin-fullerene dyad and of its porphyrin analogue adsorbed at the dodecane/water interface are investigated by using surface second-harmonic generation. Although the porphyrin is formally centrosymmetric, the second-harmonic spectra of both compounds are dominated by the intense Soret band of the porphyrin. Polarization-selective measurements and molecular dynamics simulations suggest an angle of about 45° between the donor-acceptor axis and the interfacial plane, with the porphyrin interacting mostly with the nonpolar phase. Time-resolved measurements reveal a marked concentration dependence of the dynamics of both compounds upon Q-band excitation, indicating the occurrence of intermolecular quenching processes. The significant differences in dynamics and spectra between the dyad and the porphyrin analogue are explained by a self-quenching of the excited dyad via an intermolecular electron transfer.
A series of nine soluble, symmetric chalcogenophenes bearing hexyl-substituted triphenylamines, indolocarbazoles, or phenylcarbazoles was designed and synthesized as potential two-photon absorption (2PA) initiators. A detailed photophysical analysis of these molecules revealed good 2PA properties of the series and, in particular, a strong influence of selenium on the 2PA cross sections, rendering these materials especially promising new 2PA photoinitiators. Structuring and threshold tests proved the efficiency and broad spectral versatility of two selenium-containing lead compounds as well as their applicability in an acrylate resin formulation. A comparison with commercial photoinitiators Irg369 and BAPO as well as sensitizer ITX showed that the newly designed selenium-based materials TPA-S and TPA-BBS outperform these traditional initiators by far both in terms of reactivity and dose. Moreover, by increasing the ultralow concentration of TPA-BBS, a further reduction of the polymerization threshold can be achieved, revealing the great potential of this series for application in two-photon polymerization (2PP) systems where only low laser power is available.
  
he emissive properties of symmetric molecules containing several donor-acceptor branches are often similar to those of the single-branched analogues. This is due to the at least partial localization of the excitation on one branch. Detailed understanding of this excited-state symmetry breaking (ES-SB) requires the ability to monitor this process in real time. Over the past few years, several spectroscopic approaches were shown to enable visualization of ES-SB and of its dynamics. They include the detection of new vibrational or electronic absorption bands associated with transitions that are forbidden in the symmetric excited state. Alternatively, ES-SB can be detected by observing transitions that become weaker or vanish upon localization of the excitation. Herein, we discuss these different approaches as well as their merits and weaknesses.
 
The current developments in photoredox chemistry are stimulating a renewed interest for bimolecular photoinduced electron transfer reactions. Their investigation, initiated in the 1960s using conventional photochemical tools, resulted in a relatively simple reaction scheme. More recent studies, using not only spectroscopic techniques with better time resolution and extended spectral/temporal windows but also molecular dynamics simulations, reveal a more complex picture. This Perspective focuses on the results of these latest studies with neutral organic reactants, highlighting the time dependence of the quenching rate, the effect of mutual orientation of the reactants on the electronic coupling, and their consequence on the nature of the reaction product. Remaining questions, such as the occurrence of distant electron transfer in nonviscous liquids are also addressed, and possible directions toward their answer are proposed.
  
The radical anion of 9,10-dicyanoanthracene (DCA) has been suggested to be a promising chromophore for photoredox chemistry, due to its nanosecond excited-state lifetime determined from indirect measurements. Here, we investigate the excited-state dynamics of the radical anion of three cyanoanthracenes, including DCA˙−, produced by photoinduced electron transfer in liquid using both pump–probe and pump–pump probe transient electronic absorption spectroscopy. All three excited radical ions are characterised by a 3–5 ps lifetime, due to efficient non-radiative deactivation to the ground state. The decay pathway most probably involves D1/D0 conical intersection(s), whose presence is favoured by the enhanced flexibility of the radical anions relative to their neutral counterparts. The origin of the discrepancy with the nanosecond lifetime of DCA˙−* reported previously is discussed. These very short lifetimes limit, but do not preclude, photochemical applications of the cyanoanthracene anions.
 
  
  • Dye-Sensitized Photoelectrosynthesis Cells for Benzyl Alcohol Oxidation Using a Zinc Porphyrin Sensitizer and TEMPO Catalyst
    E. Nikoloudakis, B.P. Palas, G. Charalambidis, D.S. Budkina, S. Diring, A. Planchat, D. Jacquemin, E. Vauthey, A.G. Coutsolelos and F. Odobel
    ACS Catalysis, 11 (19) (2021), p12075-12086
    DOI:10.1021/acscatal.1c02609 | unige:154975 | Abstract | Article HTML | Article PDF | Supporting Info
 
  
Excited-state symmetry breaking is investigated in a series of symmetric 9,10-dicyanoanthracenes linked to electron-donating groups on the 2 and 6 positions via different spacers, allowing for a tuning of the length of the donor-acceptor branches. The excited-state properties of these compounds are compared with their dipolar single-branch analogues. The changes in electronic structure upon their optical excitation are monitored by transient electronic spectroscopy in the visible and near-infrared regions as well as by transient vibrational spectroscopy in the mid-infrared. Our results reveal that, with the shortest branches, electronic excitation remains distributed almost symmetrically over the molecule even in polar environments. Upon increasing the donor–acceptor distance, excitation becomes unevenly distributed and, with the longest one, it fully localises on one branch in polar solvents. The influence of the branch length on the propensity of quadrupolar dyes to undergo excited-state symmetry breaking is rationalised in terms of the balance between interbranch coupling and solvation energy.
 
Excited-state symmetry breaking (ES-SB) is common to a large number of multibranched electron donor-acceptor (DA) molecules in polar environments. During this process, the electronic excitation, originally evenly distributed over the molecule, localizes, at least partially, on one branch. Due to the absence of an unambiguous spectroscopic signature in the UV-vis region, electronic transient absorption (TA) has not been the method of choice for real-time observation of this phenomenon. Herein, we demonstrate that the Laporte rule, which states that one-photon transitions conserving parity are forbidden in centrosymmetric molecules, provides such clear signature of ES-SB in electronic TA spectroscopy. Using a dicyanoanthracene-based D-A-D dye, we show that transitions from the S1 state of this molecule, which are initially Laporte forbidden, become allowed upon ES-SB. This leads to the rise of new TA bands, whose intensity provides a direct measure of the extent of asymmetry in the excited state.
  • Porous shape-persistent rylene imine cages with tunable optoelectronic properties and delayed fluorescence
    H.-H. Huang, K.S. Song, A. Prescimone, A. Aster, G. Cohen, R. Mannancherry, E. Vauthey, A. Coskun and T. Šolomek
    Chemical Science, 12 (2021), p5275-5285
    DOI:10.1039/D1SC00347J | unige:150993 | Abstract | Article HTML | Article PDF | Supporting Info
A simultaneous combination of porosity and tunable optoelectronic properties, common in covalent organic frameworks, is rare in shape-persistent organic cages. Yet, organic cages offer important molecular advantages such as solubility and modularity. Herein, we report the synthesis of a series of chiral imine organic cages with three built-in rylene units by means of dynamic imine chemistry and we investigate their textural and optoelectronic properties. Thereby we demonstrate that the synthesized rylene cages can be reversibly reduced at accessible potentials, absorb from UV up to green light, are porous, and preferentially adsorb CO2 over N2 and CH4 with a good selectivity. In addition, we discovered that the cage incorporating three perylene-3,4:9,10-bis(dicarboximide) units displays an efficient delayed fluorescence. Time-correlated single photon counting and transient absorption spectroscopy measurements suggest that the delayed fluorescence is likely a consequence of a reversible intracage charge-separation event. Rylene cages thus offer a promising platform that allows combining the porosity of processable materials and photochemical phenomena useful in diverse applications such as photocatalysis or energy storage.
  
  • Long-lived triplet charge-separated state in naphthalenediimide based donor–acceptor systems
    A. Aster, C. Rumble, A.-B. Bornhof, H.-H. Huang, N. Sakai, T. Šolomek, S. Matile and E. Vauthey
    Chemical Science, 12 (2021), p4908-4915
    DOI:10.1039/D1SC00285F | unige:150871 | Abstract | Article HTML | Article PDF | Supporting Info
1,4,5,8-Naphthalenediimides (NDIs) are widely used motifs to design multichromophoric architectures due to their ease of functionalisation, their high oxidative power and the stability of their radical anion. The NDI building block can be incorporated in supramolecular systems by either core or imide functionalization. We report on the charge-transfer dynamics of a series of electron donor–acceptor dyads consisting of a NDI chromophore with one or two donors linked at the axial, imide position. Photo-population of the core-centred À–À* state is followed by ultrafast electron transfer from the electron donor to the NDI. Due to a solvent dependent singlet–triplet equilibrium inherent to the NDI core, both singlet and triplet charge-separated states are populated. We demonstrate that long-lived charge separation in the triplet state can be achieved by controlling the mutual orientation of the donor–acceptor sub-units. By extending this study to a supramolecular NDI-based cage, we also show that the triplet charge-separation yield can be increased by tuning the environment.
 
This study addresses a practical aspect of hybrid dye-sensitized photoelectrochemical cells by exploring a simple method to prepare multicomponent systems. Building on a previously reported methodology based on a copper-free click chemistry dipolar cycloaddition of azide with activated alkyne, a naphthalene diimide (NDI) derivative substituted with two propiolic esters was clicked on a NiO photocathode already coated with a diketopyrrolopyrrole (DPP) dye bearing two azido groups. A detailed photophysical study by transient absorption spectroscopy demonstrates that optical excitation of DPP dye leads to an effective electron transfer chain from the NiO valence band to the NDI passing via the DPP dye, resulting in a long-lived charge-separated state (hole in NiO/NDI radical anion) of 170 μs. The p-type dye-sensitized solar cells were also fabricated with the above molecular components and confirm the occurrence of the electron transfer as the performances of the solar cells were improved in terms of Voc and Jsc compared to the DPP dye lacking the NDI unit. The above-clicked system was also compared to a covalently linked DPP–NDI dyad, whose performances are 30% superior to the clicked system probably due to longer mean distance between the NiO surface and the NDI with the dyad. This finding paves the way for the design of multicomponent hybrid dye-sensitized photoelectrochemical cells by chemistry on the electrode.
  
Singlet fission (SF), i.e., the splitting of a high-energy exciton into two lower-energy triplet excitons, has the potential to increase the efficiency for harvesting spectrally broad light. The path from the photopopulated singlet state to free triplets is complicated by competing processes that decrease the overall SF efficiency. A detailed understanding of the whole cascade and the nature of the photoexcited singlet state is still a major challenge. Here, we introduce a pentacene dimer with a flexible crown ether spacer enabling a control of the interchromophore coupling upon solvent-induced self-aggregation as well as cation binding. The systematic change of solvent polarity and viscosity and excitation wavelength, as well as the available conformational phase space, allows us to draw a coherent picture of the whole SF cascade from the femtosecond to microsecond time scales. High coupling leads to ultrafast SF (<2 ps), independent of the solvent polarity, and to highly coupled correlated triplet pairs. The absence of a polarity effect indicates that the solvent coordinate does not play a significant role and that SF is driven by intramolecular modes. Low coupling results in much slower SF (∼500 ps), which depends on viscosity, and leads to weakly coupled correlated triplet pairs. These two triplet pairs could be spectrally distinguished and their contribution to the overall SF efficiency, i.e., to the population of free triplets, could be determined. Our results reveal how the overall SF efficiency can be increased by conformational restrictions and control of the structural fluctuation dynamics.
  • Universal quenching of common fluorescent probes by water and alcohols
    J. Maillard, K. Klehs, C. Rumble, E. Vauthey, M. Heilemann and A. Fürstenberg
    Chemical Science, 12 (2021), p1352-1362
    DOI:10.1039/D0SC05431C | unige:148739 | Abstract | Article HTML | Article PDF
Although biological imaging is mostly performed in aqueous media, it is hardly ever considered that water acts as a classic fluorescence quencher for organic fluorophores. By investigating the fluorescence properties of 42 common organic fluorophores recommended for biological labelling, we demonstrate that H2O reduces their fluorescence quantum yield and lifetime by up to threefold and uncover the underlying fluorescence quenching mechanism. We show that the quenching efficiency is significantly larger for red-emitting probes and follows an energy gap law. The fluorescence quenching finds its origin in high-energy vibrations of the solvent (OH groups), as methanol and other linear alcohols are also found to quench the emission, whereas it is restored in deuterated solvents. Our observations are consistent with a mechanism by which the electronic excitation of the fluorophore is resonantly transferred to overtones and combination transitions of high-frequency vibrational stretching modes of the solvent through space and not through hydrogen bonds. Insight into this solvent-assisted quenching mechanism opens the door to the rational design of brighter fluorescent probes by offering a justification for protecting organic fluorophores from the solvent via encapsulation.
 
The absorption band shape of chromophores in liquid solution at room temperature is usually dominated by pure electronic dephasing dynamics, which occurs on the sub-100 fs time scale. Herein, we report on a series of dyads consisting of a naphthalenediimide (NDI) electron acceptor with one or two phenyl-based donors for which photoinduced intramolecular electron transfer is fast enough to be competitive with pure electronic dephasing. As a consequence, the absorption band of the À-À* transition of these dyads is broader than that of the NDI alone to an extent that scales with the electron transfer rate. Additionally, this reaction is so fast that it leads to the impulsive excitation of a low-frequency vibrational mode of the charge-separated product. Quantum-chemical calculations suggest that this vibration involves the C-N donor-acceptor bond, which shortens considerably upon electron transfer.
  
Interfaces with room-temperature ionic liquids (ILs) play key roles in many applications of these solvents, but our understanding of their properties is still limited. We investigate how the addition of ILs in the aqueous subphase affects the adsorption of the cationic dye malachite green at the dodecane/water interface using stationary and time-resolved surface second harmonic generation. We find that the interfacial concentration of malachite green depends crucially on the nature of both anionic and cationic constituents. This concentration reports on the overall charge of the interface, which itself depends on the relative interfacial affinity of the ions. Our results reveal that the addition of ILs to the aqueous subphase has similar effects to the addition of conventional salts. However, the IL cations have a significantly higher propensity to adsorb than small inorganic cations. Furthermore, the IL constituents show a synergistic effect, as the interfacial concentration of each of them also depends on the interfacial affinity of the other.
 
Naphthalenediimides (NDIs) are privileged scaffolds par excellence, of use in functional systems from catalysts to ion channels, photosystems, sensors, ordered matter in all forms, tubes, knots, stacks, sheets, vesicles, and colored over the full visible range. Despite this extensively explored chemical space, there is still room to discover core-substituted NDIs with fundamentally new properties: NDIs with cyclic trisulfides (i.e., trisulfanes) in their core absåorb at 668?nm, emit at 801?nm, and contract into disulfides (i.e., dithietes) upon irradiation at <475?nm. Intramolecular 1,5-chalcogen bonds account for record redshifts with trisulfides, ring-tension mediated chalcogen-bond-mediated cleavage for blueshifts to 492?nm upon ring contraction. Cyclic oligochalcogenides (COCs) in the NDI core open faster than strained dithiolanes as in asparagusic acid and are much better retained on thiol exchange affinity columns. This makes COC-NDIs attractive not only within the existing multifunctionality, particularly artificial photosystems, but also for thiol-mediated cellular uptake.
  
Reliable estimation of the driving force for photoinduced electron transfer between neutral reactants is of utmost importance for most practical applications of these reactions. The driving force is usually calculated from the Weller equation, which contains a Coulomb term, C, whose magnitude in polar solvents is debated. We have performed umbrella sampling molecular dynamics simulations to determine C from the potentials of mean force between neutral and ionic donor/acceptor pairs of different sizes in solvents of varying polarity. According to the simulations, C in polar solvents is a factor of 2 more negative than typically calculated according to the Weller equation. Use of the À-stack contact distance in the Weller equation instead of the van der Waals radius recovers the correct value of C, but this is mostly fortuitous due to the compensating effects of overestimating the dielectric screening at contact and neglecting both charge dilution and desolvation.
 
  
  • Chemistry on the electrodes: post-functionalization and stability enhancement of anchored dyes on mesoporous metal oxide photoelectrochemical cells with copper-free Huisgen cycloaddition reaction
    Y. Bentounsi, K. Seintis, D. Ameline, S. Diring, D. Provost, E. Blart, Y. Pellegrin, D. Cossement, E. Vauthey and F Odobel
    J. Mater. Chem. A, 8 (2020), p12633-12640
    DOI:10.1039/D0TA04982D | unige:138165 | Abstract | Article HTML | Article PDF
  • Mechanosensitive membrane probes: push-pull papillons
    H.V. Humeniuk, G. Licari, E. Vauthey, N. Sakai and S. Matile
    Supramol. Chem., 32 (2020), p106-111
    DOI:10.1080/10610278.2019.1702193 | unige:131618 | Abstract | Article HTML | Article PDF
Design, synthesis and evaluation of push-pull N,N′-diphenyl-dihydrodibenzo[a,c]phenazines are reported. Consistent with theoretical predictions, donors and acceptors attached to the bent mechanophore are shown to shift absorption maxima to either red or blue, depending on their positioning in the chromophore. Redshifted excitation of push-pull fluorophores is reflected in redshifted emission of both bent and planar excited states. The intensity ratios of the dual emission in more and less polar solvents imply that excited-state (ES) planarization decelerates with increasing fluorophore macrodipole, presumably due to attraction between the wings of closed papillons. ES planarization of highly polarisable papillons is not observed in lipid bilayer membranes. All push-pull papillon amphiphiles excel with aggregation-induced emission (AIE) from bent ES as micelles in water and mechanosensitivity in viscous solvents. They are not solvatochromic and only weakly fluorescent (QY < 4%).
 
  
The nature of the electronic excited state of many symmetric multibranched donor–acceptor molecules varies from delocalized/multipolar to localized/dipolar depending on the environment. Solvent-driven localization breaks the symmetry and traps the exciton in one branch. Using a combination of ultrafast spectroscopies, we investigate how such excited-state symmetry breaking affects the photochemical reactivity of quadrupolar and octupolar A(-À-D)2,3 molecules with photoisomerizable A-À-D branches. Excited-state symmetry breaking is identified by monitoring several spectroscopic signatures of the multipolar delocalized exciton, including the S2â†S1 electronic transition, whose energy reflects interbranch coupling. It occurs in all but nonpolar solvents. In polar media, it is rapidly followed by an alkyne-allene isomerization of the excited branch. In nonpolar solvents, slow and reversible isomerization corresponding to chemically-driven symmetry breaking, is observed. These findings reveal that the photoreactivity of large conjugated molecules can be tuned by controlling the localization of the excitation.
 
A significant number of quadrupolar dyes with a D-À-A-À-D or  A-À-D-À-A  structure, where D and A are electron donor and acceptor groups, were shown to undergo symmetry breaking (SB) upon optical excitation. During this process, electronic excitation, originally distributed evenly over the molecule, concentrates on one D−À–A branch, and the molecule becomes dipolar. This process can be monitored by time-resolved infrared spectroscopy and causes significant spectral dynamics. A theoretical model of excited-state SB developed earlier (Ivanov, A. I. J. Phys. Chem. C2018,122, 29165–29172) is extended to account for the temporal changes taking place in the IR spectrum upon SB. This model can reproduce the IR spectral dynamics observed in the -C≡C- stretching region with a D-À-A-À-D dye in two polar solvents using a single set of molecular parameters. This approach allows estimating the degree of asymmetry of the excited state in different solvents and its change during SB. Additionally, the relative contribution of different mechanisms responsible for the splitting of the symmetric and antisymmetric -C≡C-  stretching bands, which are both IR active upon SB, can be determined.

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024